This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ion Ventures, a modern utility and energy storage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
Although O3-layered metal oxides are promising cathode materials for high-energy Na-ion batteries, they suffer from fast capacity fade. Interface stability, particularly the structural and chemical stability, has been known to be essential for battery performance. A paper on their work is published in the journal, ACS Energy Letters.
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. Earlier post.).
Researchers at Northeastern University in Shenyang, China, have identified a novel carbon arsenide (AsC 5 ) monolayer as a promising anode material for sodium-ion batteries (NIBs). A paper on their work is published in Journal of Power Sources. —Lu et al. —Lu et al. 2023.233439
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 100 to 150 mA h g ?1
Solid-state sodium-ion battery company LiNa Energy has closed out a £3-million (US$3.4-million) LiNA will also build a presence in India where LiNa has signed an MoU with Social Alpha to optimise product development for the India market and oversee battery cell testing and future pilot projects. Earlier post.)
Solid-state sodium-ion batteries are safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Researchers at the University of Houston have now developed an organic cathode that improves both stability and energy density.
A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. Batteries'
Blackstone Technology GmbH may begin commercialization of 3D-printed solid-state sodium-ion batteries as early as 2025. Furthermore, the upscaling of sodium-based solid-state electrolytes on a ton scale is being developed in order to be able to produce them in the Blackstone Group from 2025.
Researchers at the University of Maryland, with colleagues at the University of Illinois at Chicago, report on a new method for expanding graphite for use as a superior anode for sodium-ion batteries in a paper in Nature Communications. to enlarge the interlayer lattice distance to accomodate the larger sodium ions.
Construction of the molten-salt electrolyte battery. is considering targeting its lower-temperature molten-salt electrolyte battery, being developed in partnership with Kyoto University ( earlier post ), to makers of electric and hybrid passenger cars, according to Bloomberg. Source: Sumitomo. Click to enlarge.
Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. Yissum is the technology transfer company of the University. It gives a high capacity of 730?mAh?g —Yu et al.
At Auto Shanghai, Chinese battery giant CATL launched what it calls a “condensed battery”—a type of semi-solid state cell with an energy density of up to 500 Wh/kg. CATL also says it can achieve mass production of condensed battery in a short period of time.
Building on earlier work, researchers in China have fabricated a hierarchical metal-organic nanocomposite for use as a cathode in sodium-ion batteries (SIBs). Moreover, the transition metal ions participate in the electrochemical reaction at high potentials that is helpful to raise the battery voltage. —Huang et al.
Swedish sodium-ion battery developer Altris presented a pure Prussian White cathode material with a capacity of 160 mAh/g, making it the highest capacity declared to date. Prussian White is a framework material consisting of sodium, iron, carbon and nitrogen (Na x Fe[Fe(CN) 6 ] with x>1.9). Earlier post.)
Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. A typical Li-air battery discharges at 2.5-2.7
Solid-state sodiumbattery company LiNa Energy ( earlier post ) has closed out a £3.5-million LiNa Energy, a spin-out from Lancaster University, established in 2017, is commercializing a safe, cobalt- and lithium-free solid-state sodiumbattery. million (US$4.8-million)
Prototype sodium silicate hydrogen generation system as presented earlier this year at DOE merit review. The H300 utilizes real-time swappable cartridges that generate hydrogen on demand using SiGNa’s proprietary sodium silicide (NaSi) powder. Sodium-Silica-Gel: 2Na-SG + H 2 O → H 2 + Na 2 Si 2 O 5. Click to enlarge.
Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. Rechargeable Na-ion batteries work on the same basic principle as Li-ion batteries—i.e., —Wang et al.
Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). eld of Na-ion batteries. cycling stability at 50 mA/g. Credit: ACS, Liu et al.
A team from the University of Technology, Sydney (Australia) and Gyeongsang National University (S. Korea) have developed SnO2 @graphene nanocomposites for use as anodes in sodium-ion (Na-ion) batteries. The material also demonstrated a good high rate capability for reversible sodium storage. —Su et al.
Xcel Energy has released the preliminary results from its wind-to-battery (W2B) storage project in Minnesota, and termed the technology successful. In October 2008, Xcel began testing a one-megawatt sodium-sulfur (NaS) battery ( earlier post ) to demonstrate its ability to store wind energy and move it to the electricity grid when needed.
The first international “Science Award Electrochemistry” from BASF and Volkswagen ( earlier post ) goes to Dr. Naoaki Yabuuchi, Tokyo University of Science, Institute for Science and Technology, Tokyo, Japan. Yabuuchi has showed, among other things, how new battery materials can improve the efficiency of lithium-ion and sodium-ion batteries.
An ingredient used to flavor whiskey and make fertilizer could soon play an important role in EV batteries, researcher at Estonia's Tartu University say.
Researchers at the University of Tokyo have developed a battery based on the concept of a combination of a perovskite-type cathode and a low-electrode-potential anode that can achieve high energy densities through the use of organic rather than aqueous electrolytes. Earlier post.). Earlier post.). FeO z , with 2.58 ?
Friedrich Schiller University Jena (FSU) and the Fraunhofer Institute for Ceramic Technologies and Systems Hermsdorf / (IKTS) are launching the new Center for Energy and Environmental Chemistry (CEEC) at Jena in Germany. There are also two newly established research groups which have already been set up in preparation for the center.
Researchers at Justus Liebig University, Giessen, Germany, have improved the performance of sodium-ion batteries ( earlier post ) by using tailor-made carbon materials with hierarchical porosity for the anode instead of common carbon-based anode materials. Performance of the new anodes. Wenzel et al. Click to enlarge.
Stanford researchers have developed a sodium-ion battery (SIB) that can store the same amount of energy as a state-of-the-art lithium ion, at substantially lower cost. Thus, further research is required to find better sodium host materials. The sodium salt makes up the cathode; the anode is made up of phosphorous.
in partnership with Kyoto University, has developed a lower temperature molten-salt rechargeable battery that promises to cost only about 10% as much as lithium ion batteries. Molten-salt batteries use highly conductive molten salts as an electrolyte, and can offer high energy and power densities.
Researchers at Empa and the University of Geneva (UNIGE) have developed a prototype of a novel solid-state sodiumbattery with the potential to store extra energy and with improved safety. Rechargeable all-solid-state batteries promise higher energy density and improved operational safety. B 10 H 10 ) 0. Duchêne et al.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.
A team from the Max Planck Institute for Solid State Research in Stuttgart and the University of Science and Technology of China, Hefei, has developed a high-power, high-capacity sodiumbattery with 96% capacity retention after 2,000 cycles. A paper on their work is published in the journal Advanced Materials. —Zhu et al.
Researchers at Tohoku University have devised a means to stabilize lithium or sodium depositions in rechargeable batteries, helping keep their metallic structure intact. The discovery prevents potential battery degradation and short circuiting, and paves the way for higher energy-density metal-anode batteries.
Scheme of the new full sodium-ion battery, which combines an intercalation cathode and a conversion anode. This battery system combines an intercalation cathode and a conversion anode, resulting in high capacity, high rate capability, thermal stability, and much improved cycle life. (In Credit: ACS, Oh et al. Click to enlarge.
Researchers at Wuhan University (China) have synthesized a Sb/C (antimony/carbon) nanocomposite for use as an anode material in a room-temperature sodium-ion (Na-ion) battery. A sodium disk served as the counter and reference electrode. Source: Yang et al. Click to enlarge. doi: 10.1039/C2CC32730A.
The Advanced Research Projects Agency - Energy (ARPA-E) has awarded $3 million from its 2015 OPEN funding to a project to develop an all-solid-state sodiumbattery. A sodium-based battery, on the other hand, has the potential to store larger amounts of electrical energy at a significantly lower cost. Led by Steve W.
Tesla China battery cell supplier Contemporary Amperex Technology Co. CATL) unveiled its sodium-ion battery earlier today, along with a solution that could integrate the cells with lithium-ion batteries in a single pack. Moreover, they’re compatible and complementary with lithium-ion batteries. CATL sold 34.1
Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery.
Out of several candidates that could replace Li in rechargeable batteries, calcium (Ca) stands out as a promising metal. Not only is Ca 10,000 times more abundant than Li, but it can also yield—in theory—similar battery performance. Haesun Park, Chung-Ang University, co-corresponding author. —Prof.
The US Department of Energy (DOE) will award $42 million to 12 projects to strengthen the domestic supply chain for advanced batteries that power electric vehicles (EVs). Project K is developing and commercializing a potassium-ion battery, which operates similarly to Li-ion batteries. Award amount: $3,198,085).
Lithium and cobalt are fundamental components of present lithium-ion batteries. Analysis by researchers at the Helmholtz Institute Ulm (HIU) of the Karlsruhe Institute of Technology (KIT) suggests that, given the foreseen scaling of battery demand up to 2050, each may face supply risks, albeit for different reasons.
Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have developed a continuous electrically-driven membrane process which successfully enriches lithium from seawater samples of the Red Sea by 43,000 times (i.e., 13000 ppm of sodium, magnesium, calcium, and potassium ions, among others).
Lithium-ion batteries (LIBs) are, by far, the most widely used type of rechargeable batteries, spanning numerous applications. Although LIBs deliver the best performance in many aspects when compared to other rechargeable batteries, they have their fair share of disadvantages.
Schematic representation of the working principle behind a complete cycle of the desalination battery, showing how energy extraction can be accomplished: step 1, desalination; step 2, removal of the desalinated water and inlet of seawater; step 3, discharge of Na + and Cl ? in seawater; step 4, exchange to new seawater. Click to enlarge.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content