This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ion Ventures, a modern utility and energy storage infrastructure specialist, and LiNa Energy , a solid-state battery technology developer, concluded their first successful trial of LiNa’s proprietary solid-state sodium-nickel battery platform at an undisclosed location in South East England last week.
the leader in sodium-ion (Na-ion) battery technology, has received its first order from ICM Australia for high-energy sodium-ion batteries for use in the Australian market. Unlike lithium-ion batteries, Faradion’s sodium-ion batteries have exceptional thermal stability and safety.
(CATL) unveiled its first-generation sodium-ion battery, together with its AB battery pack solution—which is able to integrate sodium-ion cells and lithium-ion cells into one pack. The sodium-ion battery has a similar working principle to the lithium-ion battery; sodium ions shuttle between the cathode and anode.
One of the more promising candidates for batteries beyond the current standard of lithium-ion materials is the sodium-ion (Na-ion) battery. Na-ion is particularly attractive because of the greater abundance and lower cost of sodium compared with lithium. In addition, when cycled at high voltage (4.5 —Guiliang Xu.
Natron Energy, a manufacturer of sodium-ion batteries, and Clarios International Inc., a manufacturer of low-voltage advanced battery technologies for mobility, will collaborate to manufacture the first mass-produced sodium-ion batteries. Earlier post.)
Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energy storage systems. —Jin et al.
Although O3-layered metal oxides are promising cathode materials for high-energy Na-ion batteries, they suffer from fast capacity fade. Interface stability, particularly the structural and chemical stability, has been known to be essential for battery performance. A paper on their work is published in the journal, ACS Energy Letters.
In a paper in Nature Materials , a team of researchers from BASF SE and Justus-Liebig-Universität Gießen report on the performance of a sodium-air (sodium superoxide) cell. Their work, they suggest, demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal–air batteries.
Solid-state sodium-ion battery company LiNa Energy ( earlier post ) successfully completed an independent demonstration of its lithium-free sodiumbatteries for energy storage systems with commercial partner ion Ventures.
Blackstone Technology GmbH may begin commercialization of 3D-printed solid-state sodium-ion batteries as early as 2025. Furthermore, the upscaling of sodium-based solid-state electrolytes on a ton scale is being developed in order to be able to produce them in the Blackstone Group from 2025.
BC Hydro has selected S&C Electric Company, a renewable energy integration company, for a sodium-sulfur (NaS) battery energy storage project intended to improve service reliability for a remote mountain community in British Columbia.
Researchers led by the Department of Energy’s Pacific Northwest National Laboratory (PNNL) have extended the capacity and duration of sodium-aluminum batteries. The new sodium-based molten salt battery uses two distinct reactions. The team previously reported a neutral molten salt reaction. of peak charge capacity.
Researchers at Northeastern University in Shenyang, China, have identified a novel carbon arsenide (AsC 5 ) monolayer as a promising anode material for sodium-ion batteries (NIBs). The metallic behavior of monolayer (bilayer) AsC 5 is maintained when Na atoms are inserted, ensuring excellent electric transportation.
F 0.7 , for sodium-ion (Na-ion) batteries (NIBs). Large-scale energy storage systems are needed to deal with intermittent electricity production of solar and wind. Recently, attention has been refocused on room-temperature Na-ion batteries (NIBs) as a low-cost alternative technology as compared to LIBs. Batteries'
Electric bus with dual battery system. The hybrid systems research team at GE Global Research has successfully demonstrated a dual battery system for an electric transit bus, pairing a high-energy density sodium metal halide battery with a high-power lithium battery. Click to enlarge.
Researchers at Pacific Northwest National Laboratory (PNNL) have devised an alloying strategy that enables sodium-beta batteries to operate at significantly lower temperatures. The new electrode enables sodium-beta batteries to last longer, helps streamline their manufacturing process and reduces the risk of accidental fire.
Pacific Gas and Electric Company (PG&E) and the California Energy Commission today unveiled a utility-scale sodium-sulfur battery energy storage system ( earlier post ) pilot project to better balance power needs of the electric grid. The system has a 4 megawatt capacity, and can store more than six hours of energy.
Solid-state sodium-ion batteries are safer than conventional lithium-ion batteries, which pose a risk of fire and explosions, but their performance has been too weak to offset the safety advantages. Normally, a solid-state battery’s ability to store energy is halted when the resistive cathode? 2019.03.017.
Researchers at the University of Maryland, with colleagues at the University of Illinois at Chicago, report on a new method for expanding graphite for use as a superior anode for sodium-ion batteries in a paper in Nature Communications. Sodium (Na) is an earth-abundant and inexpensive element, and shares many properties with lithium.
GE’s ecomagination.com publication reports that GE engineers have begun testing a transit bus equipped with a new hybrid energy system integrating GE’s Durathon sodium-halide battery ( earlier post ), a lithium-ion battery and a hydrogen fuel cell.
Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have developed a continuous electrically-driven membrane process which successfully enriches lithium from seawater samples of the Red Sea by 43,000 times (i.e., 13000 ppm of sodium, magnesium, calcium, and potassium ions, among others).
Construction of the molten-salt electrolyte battery. Sumitomo Electric Industries Ltd. is considering targeting its lower-temperature molten-salt electrolyte battery, being developed in partnership with Kyoto University ( earlier post ), to makers of electric and hybrid passenger cars, according to Bloomberg.
Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. We also demonstrate a battery with the stibnite–graphene composite that is free from sodium metal, having energy density up to 80?
Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. Rechargeable Na-ion batteries work on the same basic principle as Li-ion batteries—i.e., —Wang et al.
Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). eld of Na-ion batteries. Amorphous FePO 4.
At Auto Shanghai, Chinese battery giant CATL launched what it calls a “condensed battery”—a type of semi-solid state cell with an energy density of up to 500 Wh/kg. CATL also says it can achieve mass production of condensed battery in a short period of time.
Solid-state sodiumbattery company LiNa Energy ( earlier post ) has closed out a £3.5-million LiNa Energy, a spin-out from Lancaster University, established in 2017, is commercializing a safe, cobalt- and lithium-free solid-state sodiumbattery. million (US$4.8-million)
The sodium-ion battery of the future is coming to decarbonize US data centers and backup generators, now do electric vehicles. The post Buh-Bye, Conflict Minerals: US Gets First Sodium-Ion Battery Factory appeared first on CleanTechnica.
Researchers at Empa and the University of Geneva (UNIGE) have developed a prototype of a novel solid-state sodiumbattery with the potential to store extra energy and with improved safety. Rechargeable all-solid-state batteries promise higher energy density and improved operational safety. The team then tested the battery.
Two electric car models powered by sodium ion batteries went into production in China in late December. The post Electric Cars Powered By Sodium Ion Batteries Go On Sale In China appeared first on CleanTechnica. It this the start of a trend?
An ingredient used to flavor whiskey and make fertilizer could soon play an important role in EV batteries, researcher at Estonia's Tartu University say.
Natron Energy , a developer of new battery cell technology based on Prussian Blue analogue electrodes and a sodium-ion electrolyte, has closed a strategic investment by Chevron Technology Ventures (CTV) to support the development of stationary energy storage systems for demand charge management at electric vehicle (EV) charging stations.
The US Department of Energy (DOE) announced up to $45 million in funding ( DE-FOA-0002760 ) to support the domestic development of advanced batteries for electric vehicles. Advanced batteries capable of safe, rapid charging are necessary to appeal to these Americans who are unable to charge cars at home for long periods of time.
In the passenger car segment, sodium-ion batteries can generally meet the needs of models with a range of up to 400 kilometers, a CATL executive previously said. CATL's sodium-ion batteries are not far from starting to be installed in vehicles, after the Chinese power battery giant unveiled the new batteries in July 2021.
The electric vehicle revolution has barely gotten under way, and already the goalposts for EV charging times are moving on to the next phase. The post New Sodium-Ion Battery Could Charge An Electric Vehicle In Seconds, Not Minutes appeared first on CleanTechnica.
The unveiling of the Sehol E10X test vehicle means that sodium-ion batteries are starting to be used in passenger cars, after the new batteries were mainly used in electric two-wheelers and for energy storage. For more articles, please visit CnEVPost.
Having crossed some technical hurdles, low cost sodiumbatteries are hurtling towards the market for grid energy storage, EVs, and more. The post SodiumBatteries Challenge Lithium-Ion On Cost, Supply Chain appeared first on CleanTechnica.
Penn State researchers have proposed cold sintering as an improved method of solid-state battery production that enables multi-material integration for better batteries. This prevents fire-causing short circuits, but also in theory it enables solid-state batteries to have higher energy density. —Zane Grady, lead author.
Microstructure Simulations Reveal Strong Influence of Elastic Deformation on the Charging Behavior of Layered Oxides Used as Cathode of Sodium-ion Batteries Which factors determine how quickly a battery can be charged?
Battery technology continues to move ahead, with researchers exploring sodium-ion and solid-state technologies. The post Sodium-Ion & Solid-State Battery News appeared first on CleanTechnica.
JAC Group’s Yiwei, a new EV brand in China backed by Volkswagen , debuted the first sodium-ion battery-powered electric car. more… The post Volkswagen-backed EV maker rolls out first sodium-ion battery powered electric car appeared first on Electrek.
The UK’s Network Rail, the company that runs, maintains and develops Britain’s rail tracks, signaling, bridges, tunnels, level crossings, viaducts and 17 key stations, is part of an industry study into the feasibility of using batteryelectric trains on parts of the railway which have not been electrified.
Yadea , which has claimed the title of the worlds largest electric vehicle maker for seven years running, has just announced a new electric motorbike powered by the companys innovative HuaYu sodium-ion battery technology.
High-energy nickel (Ni)–rich cathode will play a key role in advanced lithium (Li)–ion batteries, but it suffers from moisture sensitivity, side reactions, and gas generation. Nickel offers relatively low cost, wide availability and low toxicity compared to other key battery materials, such as cobalt.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content