This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The energy density of traditional lithium-ion batteries is approaching a saturation point that cannot meet the demands of the future—in electric vehicles, for example. Lithium metal batteries can provide double the energy per unit weight when compared to lithium-ion batteries. Here, the use of an ultrathin (?1.2
Evonik has introduced the silicon-carbon composite material Siridion Black as a new anode material for lithium-ion batteries. Siridon Black features an amorphous Si/C structure with a unique carbon concentration gradient for superior stability and a high specific capacity of more than 3,300 mAh/g. Source: Evonik.
Vulcan Energy Resources will collaborate with DuPont Water Solutions,a leader in water filtration and purification, to test and to scale up Direct Lithium Extraction (DLE) solutions for Vulcan’s Zero Carbon Lithium extraction process. Earlier post.). Francis Wedin, Managing Director. Stringfellow and Patrick F.
Researchers from Chalmers University of Technology, in collaboration with KTH Royal Institute of Technology in Stockholm, have produced a structural battery that performs ten times better than all previous versions. It contains carbon fiber that serves simultaneously as an electrode, conductor, and load-bearing material.
Carbon fibers have already beeen demonstrated as high-capacity Li-ion battery anodes, opening the way for their use as structural electrodes—i.e., This is why the IM CFs with a lithiation mechanism reminiscent of disordered carbons outperform the HM CF with its larger crystallites highly oriented along the fibre direction.
Friend Family Distinguished Professor of Engineering, have been exploring the use of low-cost materials to create rechargeable batteries that will make energy storage more affordable. These materials could also provide a safer and more environmentally friendly alternative to lithium-ion batteries. They also have a very long cycle life.
A commercially viable solid-state lithium-metal battery is an advancement that the battery industry has pursued for decades, as it holds the promise of a step function increase in energy density over conventional lithium-ion batteries, enabling electric vehicles with a driving range comparable to combustion engine-based vehicles.
Researchers at Drexel University have stabilized a rare monoclinic ?-sulfur sulfur phase within carbon nanofibers that enables successful operation of Lithium-Sulfur (Li-S) batteries in carbonate electrolyte for 4000 cycles. sulfur and its application in Li-S batteries. —Pai et al. —Pai et al.
On 26 July, the first flue gas from the natural gas power plant, the Shepard Energy Center in Calgary, Canada, was directly transformed by the C2CNT process ( earlier post ) into carbon nanotubes. Carbon nanotubes grown by C2CNT directly from carbon dioxide (SEM and TEM imaging). Left and center. Earlier post.).
All-solid-state lithium batteries could address a number of the shortcomings of conventional lithium-ion batteries in advanced applications such as in electric vehicles, which demand high energy densities, fast charging, and long cycle lives. cm 2 ) by annealing the sample in a battery form. —Kobayashi et al.
Triumph: final chassis, including frame, rear sub-frame, cockpit, panels and wheels, final drive system including transmission and Gates Carbon belt drive, electronics, Öhlins USD cartridge forks, unique prototype Öhlins RSU, Brembo M50 monobloc calipers, and Triumph motorcycle control software.
Researchers at Toyohashi University of Technology in Japan have developed an active sulfur material and carbon nanofiber (S-CNF) composite material for all-solid-state Li-sulfur batteries using a low-cost and straightforward liquid phase process. Copyright Toyohashi University Of Technology. —Phuc et al.
and Waseda University have started testing in Japan of a jointly developed recycling process that efficiently recovers high-purity rare-earth compounds from electrified vehicle motor magnets. Nissan Motor Co., The testing is aimed at enabling practical application of the new process by the mid-2020s. The REEs are then recovered from the slag.
Siemens Energy, Duke Energy and Clemson University have teamed up to study the use of hydrogen for energy storage and as a low- or no-carbon fuel source to produce energy at Duke Energy’s combined heat and power plant located at Clemson University in South Carolina.
Researchers at Tokyo Metropolitan University have developed a new practical method to make a flexible composite Al-doped LLZO (Al-LLZO) sheet electrolyte (75 ?m m in thickness) for Li-metal batteries, which can be mass-produced at room temperature. Credit: Tokyo Metropolitan University.
Universal Hydrogen, magniX, Plug Power and AeroTEC have established a Hydrogen Aviation Test and Service Center at Grant County International Airport in Moses Lake, Washington. Universal Hydrogen’s Dash-8 conversion will be the first commercially-relevant hydrogen-powered aircraft, serving 41 to 60 passengers on routes up to 1,000 kilometers.
The US Department of Energy (DOE) is awarding $35 million to 15 research projects through ARPA-E’s “Energy and Carbon Optimized Synthesis for the Bioeconomy” (ECOSynBio) program to decarbonize biorefining processes used across the energy, transportation, and agriculture sectors. Carbon-Negative Chemical Production Platform - $4,160,262.57.
Researchers at the Graduate School of Engineering and Graduate School of Science at the University of Tokyo have designed and synthesized a fluorinated cyclic phosphate solvent, 2-(2,2,2-trifluoroethoxy)-1,3,2-dioxaphospholane 2-oxide (TFEP), for use in lithium-ion batteries. V versus lithium) and high-voltage LiNi 0.5
The COBRA (CObalt-free Batteries for FutuRe Automotive Applications) project has been awarded a €11.8-million million grant to develop Next Generation Cobalt-free batteries. The project will result in a unique battery system that features superior energy density, low cost, increased cycles and reduced critical materials.
A research team at Korea Electrotechnology Research Institute (KERI) has developed a high-capacity Li-metal battery with improved rate performance and stability using a one-dimensional Li-confinable porous hollow carbon host. The paper is published as a cover paper in ACS Nano. —Kang et al. 2c01309.
At Auto Shanghai, Chinese battery giant CATL launched what it calls a “condensed battery”—a type of semi-solid state cell with an energy density of up to 500 Wh/kg. CATL also says it can achieve mass production of condensed battery in a short period of time.
Researchers at Changsha University of Science & Technology in China have used spent asphalt to produce a high-performance universal Li/Na/K-ion anode material. As an anode material for Li-ion batteries, the mesoporous carbon exhibits a reversible capability of 674.2 —Xie et al. 2021.230593. 2021.230593.
Rice University scientists have developed a detection system capable of alerting for Li dendrite formation in a two?electrode electrode battery with a Li metal anode with no additional electrodes required. The phosphorus acts as a spy for management systems used to charge and monitor batteries by detecting the formation of dendrites.
The University of Georgia has placed an order for twenty Proterra 40? The University of Georgia offers free rides for students, faculty and visitors with an average daily ridership of about 40,000. With this order, the University of Georgia joins colleges and universities nationwide that are moving to battery-electric campus buses.
Constellium SE is leading a new consortium of automakers and suppliers to develop lower carbon, lower cost aluminum extrusion alloys. Alternately, Constellium HSA6 can provide 15-30% additional strength to reduce intrusion in the event of a crash, thereby enhancing protection of batteries, cooling systems and other critical vehicle systems.
by Michael Sivak, Sivak Applied Research The overall advantage of battery electric over gasoline vehicles, in terms of well-to-wheels emissions of greenhouse gases, has been well documented. Therefore, biomass as energy source was assumed to produce no additional carbon emission. Natural gas 4.1 Geothermal 0 0 Solar 0 8.8
StarMetro, the city of Tallahassee’s public transit system, has agreed to purchase 22 Proterra Catalyst FC buses to service Florida State University (FSU), bringing the StarMetro fleet to 27 battery-electric buses. Proterra has also sold its Catalyst buses to the University of Montana, Duke University and Alabama A&M University.
A research team in China has developed a new type of electrolyte for high-energy Li-ion batteries with a self-purifying feature that opens a promising approach for electrolyte engineering for next-generation high-energy Li-ion batteries. A paper on their work is published in the RSC journal Energy & Environmental Science.
Lithium-sulfur (Li-S) batteries, despite their high theoretical specific energy, face practical challenges including polysulfide shuttling and low cell-level energy density. The surface-mediated polysulfide redox behavior results in a much higher exchange current in comparison with MgO and carbon. 2018.09.024.
billion to 21 projects to expand domestic manufacturing of batteries for electric vehicles (EVs) and the electrical grid and for materials and components currently imported from other countries. The US Department of Energy (DOE) is awarding a combined $2.8 Earlier post.) Of that, $1.6 Materials Separation & Processing (Cathode Minerals).
Under current policies, home energy storage systems would also often increase carbon emissions, according to a study by a team of researchers at the University of California San Diego published in the journal Environmental Science & Technology. Oytun Babacan, Ahmed Abdulla, Ryan Hanna, Jan Kleissl, and David G. 8b03834.
Researchers at the University of Surrey (UK) are to begin work on a new lithium-ion battery technology that is capable of capturing CO 2 emissions, following a £243,689 award from the Engineering and Physical Sciences Research Council (EPSRC). However, the development of Li-CO 2 batteries is still in its infancy stage.
The electrochemical science that is urgently needed for a zero-carbon economy requires state-of-the-art data science. Tackling the extremely complex technical questions that battery scientists face requires huge amounts of data to generate AI and machine learning algorithms. —Argonne battery scientist Sue Babinec.
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. Na is comparable to graphite for standard lithium ion batteries. The estimated sodium storage up to C 6.9
Researchers at George Washington University led by Prof. Stuart Licht ( earlier post ) report a process for the high-yield, low-energy synthesis of carbon nano-onions (CNOs) by electrolysis of CO 2 in molten carbonate. The source of CO 2 to produce CNOs can be industrial flue gas, or direct air carbon capture.
Volkswagen and Stanford University have developed in partnership a new catalyst production process to reduce the comparatively high cost of automotive fuel cell technology. The material is conventionally distributed as particles on carbon powder. —Xu et al. As a result, two-dimensional growth of Pt nanoparticles can be realized.
Researchers at the University of Michigan and Ford Motor Company have conducted a cradle-to-grave life cycle GHG assessment of model year 2020 ICEV, HEV, and BEV sedans, sports utility vehicles (SUVs), and pickup trucks in the United States.
Researchers at Jiangsu Normal University in China have devised a boron-doped carbon-sulfur (BCS) aerogel with consecutive “core-shell” stuctures as a binder-free cathode for lithium-sulfur batteries. These problems result in low specific capacity and poor cycling life of Li-S batteries. doi: 10.1039/C8CC07594H.
Researchers from Western University, Canadian Light Source, and the Chinese Academy of Sciences have proposed a novel solid-phase Li-S transformation mechanism that enables high energy Li-S batteries in conventional Li-ion carbonate electrolytes. Schematic of a lithium sulfur battery in carbonate-based electrolyte.
New hydrogen production technology developed at the University of British Columbia (UBC) will be tested in a $7-million project between UBC, the government of Alberta and Alberta utility company ATCO. SMR still emits a significant amount of carbon dioxide and uses large quantities of water and energy. Image: MéridaLabs.
If a ban were introduced on the sale of new gasoline and diesel cars, and they were replaced by electric cars, the result would be a significant reduction in lifecycle carbon dioxide emissions primarily due to reduced tailpipe CO 2 emissions, according to a new lifecycle study by researchers at Chalmers University of Technology, Sweden.
In addition to reducing carbon dioxide in the atmosphere, the Michigan Tech project aims to extract energy-relevant metals from silicate minerals for battery manufacturing. The DOE awarded grants to develop rapid carbon mineralization and critical mineral extraction technology to 16 projects nationwide, totaling $39 million.
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. —Ann Oglesby, Vice President, Energy Research & Innovation at Phillips 66. Earlier post.).
Goodenough, The University of Texas at Austin; M. Stanley Whittingham, Binghamton University, State University of New York; and Akira Yoshino, Asahi Kasei Corporation, for the development of lithium-ion batteries. The foundation of the lithium-ion battery was laid during the oil crisis in the 1970s.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content