This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
(CATL) unveiled its first-generation sodium-ion battery, together with its AB battery pack solution—which is able to integrate sodium-ion cells and lithium-ion cells into one pack. The sodium-ion battery has a similar working principle to the lithium-ion battery; sodium ions shuttle between the cathode and anode.
Tests conducted by Titirici Group , a multidisciplinary research team based at Imperial College London, have found that a novel carbon nanotube electrode material derived from CO 2 —produced by Estonian nanotech company UP Catalyst ( earlier post )—enhances the cyclability of sodium-ion batteries. From every 3.7
Cheap and abundant, sodium is a promising candidate for new battery technology. However, the limited performance of sodium-ion batteries has hindered large-scale application. Sodium-ion batteries (NIBs) have attracted worldwide attention for next-generation energy storage systems. O 2 (NaNMC) cathode.
Uppsala-based sodium-ion battery company Altris AB ( earlier post ) raised €9.6 The funding secures Altris’ production scale-up of the company’s innovative battery cathode material, Fennac, to 2,000 tonnes, enabling 1 GWh of sustainable batteries and further research and development of sodium-ion batteries to take place.
Although O3-layered metal oxides are promising cathode materials for high-energy Na-ion batteries, they suffer from fast capacity fade. O 2 –hard carbon full-cells with practical loading (>2.5 Interface stability, particularly the structural and chemical stability, has been known to be essential for battery performance.
In a paper in Nature Materials , a team of researchers from BASF SE and Justus-Liebig-Universität Gießen report on the performance of a sodium-air (sodium superoxide) cell. Their work, they suggest, demonstrates that substitution of lithium by sodium may offer an unexpected route towards rechargeable metal–air batteries.
UK-based Faradion, a developer of sodium-ion battery technology ( earlier post ), and Phillips 66 have launched a new technical collaboration to develop lower-cost and higher-performing anode materials for sodium-ion batteries. —Ann Oglesby, Vice President, Energy Research & Innovation at Phillips 66.
Researchers at Northeastern University in Shenyang, China, have identified a novel carbon arsenide (AsC 5 ) monolayer as a promising anode material for sodium-ion batteries (NIBs). A paper on their work is published in Journal of Power Sources. —Lu et al. —Lu et al. 2023.233439
GE will invest an additional $70 million to expand its sodium-halide battery manufacturing plant in New York, which is part of the company’s new Energy Storage business. GE is also looking at using the batteries in heavy-duty hybrid applications such as in buses, locomotives and mining vehicles.
A team led by researchers from the University of Alberta (Canada) Scientists has developed a hybrid sodium-ion capacitor (NIC) using active materials in both the anode and the cathode derived entirely from peanut shells—a green and highly economical waste globally generated at more than 6 million tons per year. Batteries'
GE Energy Storage Technologies, a unit of GE Transportation, introduced its Durathon sodium-metal halide battery ( earlier post ) for critical backup power. The battery can be used in uninterruptible power supply (UPS) applications for large data centers, hospitals, and other areas where a continuous supply of power is necessary.
Researchers at Chalmers University of Technology, Sweden, have developed a nanometric graphite-like anode for sodium ion (Na + storage), formed by stacked graphene sheets functionalized only on one side, termed Janus graphene. The estimated sodium storage up to C 6.9 Na is comparable to graphite for standard lithium ion batteries.
Researchers at the Pacific Northwest National Laboratory have developed hollow carbon nanowires (HCNWs) for use as anode material for Na-ion batteries. This novel carbon nanostructure also displayed reversible capacity of more than 200 mAh g ?1 They investigated sodium ion insertion?extraction C), 125 (0.5 1 was observed.
BC Hydro has selected S&C Electric Company, a renewable energy integration company, for a sodium-sulfur (NaS) battery energy storage project intended to improve service reliability for a remote mountain community in British Columbia. This integrated solution optimizes total system efficiency and reliability for the community.
Researchers at Justus Liebig University, Giessen, Germany, have improved the performance of sodium-ion batteries ( earlier post ) by using tailor-made carbon materials with hierarchical porosity for the anode instead of common carbon-based anode materials. Wenzel et al. Click to enlarge. Wenzel et al. Wenzel et al.
Researchers at the University of Maryland, with colleagues at the University of Illinois at Chicago, report on a new method for expanding graphite for use as a superior anode for sodium-ion batteries in a paper in Nature Communications. Sodium (Na) is an earth-abundant and inexpensive element, and shares many properties with lithium.
GE’s Energy Storage business announced $63 million in new Durathon sodium-halide battery orders since the business launched in July. The technology is unique because it can function in a variety of extreme conditions and store as much energy as lead-acid batteries twice its size while lasting up to 10 times as long.
Researchers at Wuhan University (China) have synthesized a Sb/C (antimony/carbon) nanocomposite for use as an anode material in a room-temperature sodium-ion (Na-ion) battery. A sodium disk served as the counter and reference electrode. Source: Yang et al. Click to enlarge. doi: 10.1039/C2CC32730A.
Ragone plot of an NCCF-Acid/Na cathode together with two other representative Na-ion battery cathodes and lithium batteries. Sodium-ion intercalation batteries—i.e., Thus, insertion/deinsertion of sodium ions in a host material is much more difficult than that of lithium ions, the researchers note.
Swedish battery materials company Altris AB, which specializes in producing highly sustainable cathode materials for rechargeable sodiumbatteries, has officially opened its first office in China. CATL has led the way and has announced that there will be a value chain to produce such batteries by 2023. V vs sodium.
-sulfur phase within carbon nanofibers that enables successful operation of Lithium-Sulfur (Li-S) batteries in carbonate electrolyte for 4000 cycles. Carbonates are known to adversely react with the intermediate polysulfides and shut down Li-S batteries in first discharge. —Pai et al. —Pai et al.
The Jadar project would support the evolution of Rio Tinto—one of the world’s largest miners—into a chemical producer to make battery-grade lithium carbonate, a critical mineral used in large-scale batteries for electric vehicles and storing renewable energy. Assuming a 60kWh battery.].
Researchers at the University of Maryland have developed a nanocomposite material of amorphous, porous FePO 4 nanoparticles electrically wired by single-wall carbon nanotubes as a potential cathode material for sodium-ion batteries (SIBs). eld of Na-ion batteries. C rate (10 mA/g). Amorphous FePO 4.
At Auto Shanghai, Chinese battery giant CATL launched what it calls a “condensed battery”—a type of semi-solid state cell with an energy density of up to 500 Wh/kg. CATL also says it can achieve mass production of condensed battery in a short period of time.
Building on earlier work, researchers in China have fabricated a hierarchical metal-organic nanocomposite for use as a cathode in sodium-ion batteries (SIBs). Moreover, the transition metal ions participate in the electrochemical reaction at high potentials that is helpful to raise the battery voltage. —Huang et al.
Tin (Sn) shows promise as a robust electrode material for rechargeable sodium-ion (Na-ion) batteries, according to a new study by a team from the University of Pittsburgh and Sandia National Laboratory. Rechargeable Na-ion batteries work on the same basic principle as Li-ion batteries—i.e., —Wang et al.
Swedish sodium-ion battery developer Altris presented a pure Prussian White cathode material with a capacity of 160 mAh/g, making it the highest capacity declared to date. Prussian White is a framework material consisting of sodium, iron, carbon and nitrogen (Na x Fe[Fe(CN) 6 ] with x>1.9). Earlier post.) Earlier post.)
A team of researchers at the US Department of Energy’s Argonne National Laboratory has synthesized amorphous titanium dioxide nanotube (TiO 2 NT) electrodes directly grown on current collectors without binders and additives to use as an anode for sodium-ion batteries. Earlier post.). Earlier post.).
Sodium-ion batteries (Na-ion, NIBs) are seen as an alternative to lithium-ion batteries for large-scale applications due to their lower cost and abundant supply of sodium. We also demonstrate a battery with the stibnite–graphene composite that is free from sodium metal, having energy density up to 80?
Penn State researchers have proposed cold sintering as an improved method of solid-state battery production that enables multi-material integration for better batteries. This prevents fire-causing short circuits, but also in theory it enables solid-state batteries to have higher energy density. —Zane Grady, lead author.
Example of a lithium-water rechargeable battery. Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C.
Researchers from UNSW Sydney (Australia) report in an open-access paper in the Journal of Power Sources on the use of hard carbons derived from automotive shredder residue (ASR) as a suitable anode electroactive material for sodium-ion batteries (NIBs). The situation is much worse for graphite. —Sarkar et al.
A research team led by a group from Peking University has designed a new 3D carbon monolith, Hex-C 57 , using 5–7 nanoribbons as the building block, for use asan anode material for sodium-ion batteries.A paper on their work appears in the Journal of Power Sources. —Sun et al. mAhg −1 ) and volumetric capacity (314.61
The partnership will begin with a project in the battery anode space with the development of a novel process for the production of hard carbon from bio-waste. Using readily available, sustainable bio-waste material will provide Sparc with a strong environmental value proposition when compared with conventional sources of hard carbon.
The conversion is expected to reduce the facility’s greenhouse gas emissions by 50% and help California meet its lower-carbon objectives. A technical collaboration with Faradion, a leader in sodium-ion battery technology, to develop lower-cost and higher-performing anode materials for sodium-ion batteries.
Researchers at US Department of Energy (DOE) Pacific Northwest National Laboratory have demonstrated a new tin-antimony (SnSb/C) nanocomposite based on sodium (Na) alloying reactions as an anode for Na-ion battery applications. Li alloys have been extensively investigated as high capacity anodes for Li-ion batteries. With 30 wt.%
O 2 battery (0.5 The dash lines indicate the calculated thermodynamic potentials for the batteries. O 2 ) battery with low overpotentials. mA/cm 2 —the lowest ever reported in metal-oxygen batteries, according to the team. mA/cm 2 —the lowest ever reported in metal-oxygen batteries, according to the team.
Scheme of the new full sodium-ion battery, which combines an intercalation cathode and a conversion anode. Mn 0.25 ]O 2 layered cathode (NFM), and NaClO 4 in fluoroethylene carbonate and ethyl methanesulfonate electrolyte. For the anode, they selected carbon-modified iron oxide (C-Fe 3 O 4 ) conversion material.
As described in an open access paper in the journal NPG Asia Materials , the system is an intermediate between a battery and a fuel cell, and is accordingly referred to as a hybrid fuel cell. Sodium can serve as an alternative to lithium in rechargeable batteries as the reversible storage mechanisms for sodium ions are very similar (e.g.,
A team from the Max Planck Institute for Solid State Research in Stuttgart and the University of Science and Technology of China, Hefei, has developed a high-power, high-capacity sodiumbattery with 96% capacity retention after 2,000 cycles. 2016), “High Power–High Energy SodiumBattery Based on Threefold Interpenetrating Network.”
containing both cathode and anode properties in the same body—for sodium-sulfur (Na-S) batteries by adopting a metal-organic framework (MOF) to incorporate single Yttrium atoms in a nitrogen-doped rhombododecahedron carbon host (Y SAs/NC). Researchers in China have designed a high-performance Janus electrode—i.e.,
In the passenger car segment, sodium-ion batteries can generally meet the needs of models with a range of up to 400 kilometers, a CATL executive previously said. CATL's sodium-ion batteries are not far from starting to be installed in vehicles, after the Chinese power battery giant unveiled the new batteries in July 2021.
After years of anticipation, sodium-ion batteries are starting to deliver on their promise for energy storage. Sodium-ion batteries just don't have the oomph needed for EVs and laptops. Researchers now report a new type of graphene electrode that could boost the storage capacity of sodiumbatteries to rival lithium's.
MWh) of global advanced battery shipments of about 47,400 MWh, according to the most recent Advanced Battery Tracker from Navigant Research. The majority of advanced batteries (87%) went to the consumer electronics segment. GWh of advanced batteries represented more than 6 billion individual battery cells, 40.1
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content