This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
Universal Hydrogen announced $20.5-million Founded in 2020 by aviation industry veterans Paul Eremenko, John-Paul Clarke, Jason Chua, and Jon Gordon, Universal Hydrogen is stitching together the end-to-end hydrogen value chain for aviation, both for hydrogen fuel and hydrogen-powered airplanes. Universal Hydrogen modular capsule.
Universal Hydrogen Co. ACIA expects to place 10 firm orders for Universal Hydrogen’s ATR 72 conversion kits with additional purchase rights for 20 more conversion kits of various turboprop types. The conversion consists of a fuel cell electric powertrain that replaces the existing turboprop engines.
In Germany, BSE Engineering and the Institute for Renewable Energy Systems at Stralsund University of Applied Sciences (IRES) have demonstrated the conversion of wind power into renewable methanol. The final results of the project with IRES will be available in line with the commissioning of the plants.
Experts in the field, including government researchers, university specialists, and industry leaders, will provide instruction in this two-day course covering various aspects of biomass conversion including sessions on technology, economics, operations, and policy issues. CE/PDH credits are available for participants.
The conversion normally requires significant amounts of energy in the form of high heat—a temperature of at least 700 ?C, She and her colleagues, including scientists from the University of Maryland in College Park and DENSsolutions, in Delft, the Netherlands, reported their findings in Nature Materials.
The term “dispatchable” indicates availability as needed. Arizona State University. High-Temperature Topping Cells from LED Materials Arizona State University will develop a solar cell that can operate efficiently at temperatures above 450°C, unlike today’s solar cells, which lose efficiency rapidly above 100°C. Earlier post.).
With increased availability and reduced cost of bio-ethanol, conversion of this particular bio-based feedstock to highly valuable fuels and chemicals has been an especially important research goal. At the same time, the zinc oxide’s influence prevented the ethanol-to-ethylene conversion by zirconium oxide.
The EU-funded research project HyFlexFuel recently successfully produced biocrudes via hydrothermal liquefaction (HTL) from a variety of biomasses, including sewage sludge, food waste, manure, wheat straw, corn stover, pine sawdust, miscanthus and microalgae in a pilot-scale continuous HTL plant at Aarhus University (Denmark).
A team from the University of Calgary and Rice University has used flash joule heating (FJH) ( earlier post ) to convert low-value asphaltenes—a by-product of crude oil refining—into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG). Flash graphene from asphaltenes. (A)
Researchers from Northwestern University and Princeton University have explored the impact on US air quality from an aggressive conversion of internal combustion vehicles to battery-powered electric vehicles (EVs). —Jordan Schnell.
The US Department of Energy (DOE) has selected nine universities for awards for research projects that will continue to support innovation and development of advanced, lower emission coal technologies. million investment will be leveraged with additional funds from the universities to support $3.1 Brown University.
A fast, green and one-step method for producing porous carbon spheres—a component for carbon capture technology and for new ways of storing renewable energy—has been developed by Swansea University researchers. storage and conversion, catalysis, gas adsorption and storage, drug and enzyme delivery, and water treatment.
The US Department of Agriculture (USDA) awarded nearly $10 million to a consortium of academic, industry and government organizations led by Colorado State University (CSU) and their partners to research using insect-killed trees in the Rockies as a sustainable feedstock for bioenergy.
A new boron-copper catalyst for the conversion of carbon dioxide (CO 2 ) into chemicals or fuels has been developed by researchers at Ruhr-Universität Bochum and the University of Duisburg-Essen. They optimized already available copper catalysts to improve their selectivity and long-term stability.
The Virginia Department of Mines, Minerals and Energy (DMME) and Virginia Clean Cities (VCC) at James Madison University (JMU) are requesting proposals from fleets in the southeastern US interested in converting eligible gasoline vehicles to run on propane autogas. The application deadline is Friday, 12 August 2011, at 5pm EDT.
Researchers at the University of Turku in Finland have developed a thin-layer artificial biofilm technology for sustainable and long-term ethylene photoproduction. 2 ethylene at 1.54% light to ethylene conversion efficiency. fold improvement in the light to ethylene conversion efficiency as compared to the cell suspension.
Researchers from the University of Houston, with colleagues at the University of São Paolo in Brazil, have demonstrated how copper-resistant bacterium from a copper mine in Brazil convert CuSO 4 (copper sulfate) ions into zero-valent Cu (metallic copper). An open-access paper on their research is published in Science Advances.
A team from Nanjing University, Hubei Normal University and Zhejiang University has developed a cobalt-doped graphdiyne catalyst for catalytically decomposing ammonia (NH 3 ) to generate H 2. Conversely, low-cost metal catalysts are available but demonstrate suboptimal catalytic effects.
Wyman, the Ford Motor Company Chair in Environmental Engineering at the University of California, Riverside’s Bourns College of Engineering, has developed a versatile, relatively non-toxic, and efficient way to convert lignocellulosic biomass into biofuels and chemicals. Overview of the process. 2014) Click to enlarge.
Danish Minister for Transport Trine Bramsen, Aalborg municipal government representatives, and European media were invited to witness the first test runs of Geely methanol vehicles on Danish roads and visit the e-methanol production facility at Aalborg University. Both have their own advantages and together complement each other, Geely says.
Researchers from University of Girona (Spain) successfully used electrically efficient microbial electrosynthesis cells (MES) to convert CO 2 to butyric acid. mΩ m 2 ) cells in a batch-fed mode, alternating high CO 2 and hydrogen (H 2 ) availability to promote the production of acetic acid and ethanol. At an applied current of 1.0
Syzygy has licensed Rice’s antenna-reactor technology, and the study included scaled-up tests of the catalyst in the company’s commercially available, LED-powered reactors. —Hossein Robatjazi, chief scientist at Houston-based Syzygy Plasmonics. In laboratory tests at Rice, the copper-iron catalysts had been illuminated with lasers.
Researchers at Pacific Northwest National Laboratory (PNNL), with colleagues from Oregon State University, have developed PNNL a durable, inexpensive molybdenum-phosphide catalyst that efficiently converts wastewater and seawater into hydrogen. Like seawater, the MoP catalyst material is widely available, and therefore, cheap.
While chemically converting natural gas to liquid fuels (GTL) is a proven technology that increases volumetric energy density, the current conversion approach through Fischer-Tropsch (FT-GTL) is challenged by both high capital costs and low conversion efficiencies. process intensification approaches for biological methane conversion.
Every year, Netherland-based student company TU/ecomotive produces an electric car with a team of 21 BA students from the Eindhoven University of Technology, with the aim of showing the world that a hypothetical, sustainable car of the future can be a reality today. The next step for TU/ecomotive is to obtain a license plate for Luca.
The ferry—which will carry 16 cars or two trucks, and 120 passengers—will be capable of sailing to and from any concrete 1:8 slipway where hydrogen is available locally to power the vessel. The ferry will be designed around the requirements of Shapinsay in Orkney where hydrogen fuel is generated through wind power.
The University of Michigan. The University of Michigan proposes the RAFT concept as a solution for hydrokinetic energy harvesting. The control system will be able to prioritize maintaining the lowest cost of energy, increasing component life and maximum available energy. University of Washington. University of Virginia.
In addition, since producers of oil have lots of carbon dioxide available to them, companies are interested in using that carbon dioxide as an inexpensive feedstock to make value-added chemicals, including things like polymers.” Carbon Capture and Conversion (CCC) Carbon Capture and Storage (CCS) Catalysts' 2 -CO 3 )] 2?
Researchers at the University of California, Davis have developed a process for the production of branched C 7 –C 10 hydrocarbons in the gasoline volatility range from biomass-derived levulinic acid with good yield, operating under relatively mild conditions, with short reaction times. barrels of oil (117.6 gallons US).
Researchers from the University of Liverpool (UK), with colleagues from Dalian University of Technology (China) and the University of Hull (UK), have developed a new process for the direct, one-step activation of carbon dioxide and methane (dry reforming of methane) into higher value liquid fuels and chemicals (e.g.,
Researchers at the University of Michigan, McGill University and McMaster University have developed a binary copper?iron —Zetian Mi, U-M professor of electrical engineering and computer science, who co-led the work with Jun Song, professor of materials engineering at McGill University.
OXCCU, a company spun-out from the University of Oxford in 2021 that is focused on converting carbon dioxide and hydrogen into industrial and consumer products ( earlier post ), completed an £18-million (US$22.8 million) Series A financing round. Trafigura, TechEnergy Ventures and Doral Energy-Tech Ventures also participated in the financing.
Now, researchers from the University of Nevada and Washington State University have developed a novel efficient biphasic tandem catalytic process (biTCP) for synthesizing cycloalkanes from renewable terpenoid biomass (such as 1,8-cineole). Cyclic hydrocarbons (i.e. For instance, Huber and coworkers synthesized high-density (0.82
A team at the University of Idaho has demonstrated that glycerol, a byproduct from biodiesel production, could be used as a substrate for producing drop-in gasoline-range biofuel. Nevertheless, very little research into the direct conversion of glycerol to gasoline-range hydrocarbons has been reported. Tropsch synthesis (FTS).
Researchers at Stanford University have developed a nanocrystalline copper material that produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (–0.25?volts The research was supported by Stanford University, the National Science Foundation and the US Department of Energy.
Stanford researchers, with a colleague from King Fahd University of Petroleum and Minerals, have developed a simple and environmentally sound way to make ammonia with tiny droplets of water and nitrogen from the air. The conversion rate reaches 32.9 ± 1.38 This gas–liquid–solid heterogeneous catalytic system synthesizes ammonia in 0.2
A patented process for converting alcohol sourced from renewable or industrial waste gases into jet or diesel fuel is being scaled up at the US Department of Energy’s Pacific Northwest National Laboratory with the help of partners at Oregon State University and the carbon-recycling experts at LanzaTech. Image: Oregon State University).
The projects are based in 24 states, with approximately 47% of the projects led by universities; 29% by small businesses; 15% by large businesses; 7.5% Natural Gas Reactor for Remote Chemical Conversion. University. Researchers from Colorado State University will develop a system. University. by non-profits.
Researchers at the University of Houston, with their colleagues at Boston College, have created a new thermoelectric material—germanium-doped magnesium stannide (Mg 2 Sn 0.75 Ge 0.25 )—intended to generate electric power from waste heat with greater efficiency and higher output power than currently available materials.
A new spatially-explicit life cycle assessment of five different “sun-to-wheels” conversion pathways—ethanol from corn or switchgrass for internal combustion vehicles (ICVs); electricity from corn or switchgrass for battery-electric vehicles (BEVs); and photovoltaic electricity for BEVs—found a strong case for PV BEVs.
Researchers at the University of Bristol (UK) have developed a new family of catalysts that enables the conversion of ethanol into n-butanol—a higher alcohol with better characteristics for transportation applications than ethanol—with selectivity of more than 95% at good conversion. Biobutanol Catalysts Ethanol'
Fe-MSN catalyzes the conversion of crude microalgal oil into diesel-range hydrocarbons. Smith, and Young-Jin Lee, began by using bi-functionalized mesostructured nanoparticles containing amine groups that capture free fatty acids and nickel nanoparticles that catalyze the conversion of the acids into green diesel.
A team from CoorsTek Membrane Sciences, the University of Oslo (Norway), and the Instituto de Tecnología Química (ITQ) (Spain) has developed a new process for the direct, non-oxidative conversion of methane to liquids—reducing cost, eliminating multiple process steps, and avoiding CO 2 emissions. Resources. Morejudo, R.
The imminent introduction of connected and autonomous vehicles (CAVs) has stimulated consumer expectation of a traveling experience that offers a high level of comfort in which passengers will be able to work, read from a screen, watch a movie or hold a conversation while in motion, perhaps while seated in a swiveled, side- or rear-facing position.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content