Remove Austin Remove Sodium Remove Universal
article thumbnail

UT Austin team identifies promising new cathode material for sodium-ion batteries: eldfellite

Green Car Congress

Professor John Goodenough, the inventor of the lithium-ion battery, and his team at the University of Texas at Austin have identified a new cathode material made of the nontoxic and inexpensive mineral eldfellite (NaFe(SO 4 ) 2 ), presenting a significant advancement in the quest for a commercially viable sodium-ion battery.

Sodium 150
article thumbnail

U-M leads new DOE-funded research center for ceramic ion conductors; MUSIC

Green Car Congress

The University of Michigan (U-M) and eight partner institutions will explore the use of ceramic ion conductors as replacements for the traditional liquid or polymer electrolytes in common lithium-ion batteries for electric vehicles and in flow cells for storing renewable energy in the grid.

article thumbnail

UT Austin team devises new strategy for safe, low-cost, all-solid-state rechargeable Na or Li batteries suited for EVs

Green Car Congress

Researchers at the University of Texas at Austin, including Prof. With this glass, a rechargeable battery with a metallic lithium or sodium anode and an insertion-compound as cathode may require a polymer or liquid catholyte in contact with the cathode. eV, which promises to offer acceptable operation at lower temperatures.

Low Cost 150
article thumbnail

SiGNa Chemistry Demonstrates Sodium Silicate-Based Hydrogen Generation System for Portable Fuel Cells

Green Car Congress

Prototype sodium silicate hydrogen generation system as presented earlier this year at DOE merit review. The H300 utilizes real-time swappable cartridges that generate hydrogen on demand using SiGNa’s proprietary sodium silicide (NaSi) powder. Sodium-Silica-Gel: 2Na-SG + H 2 O → H 2 + Na 2 Si 2 O 5. Click to enlarge.

Sodium 230
article thumbnail

ARPA-E awarding $39M to 16 projects to grow the domestic critical minerals supply chain

Green Car Congress

The selected projects, led by universities, national laboratories, and the private sector aim to develop commercially scalable technologies that will enable greater domestic supplies of copper, nickel, lithium, cobalt, rare earth elements, and other critical elements. Columbia University. Harvard University.

Supplies 345
article thumbnail

Goodenough and UT team report new strategy for all-solid-state Na or Li battery suitable for EVs; plating cathodes

Green Car Congress

lithium, sodium or potassium) on a copper–carbon cathode current collector at a voltage of more than 3.0 Finally, sodium is cheaper than lithium and widely available from the oceans, which makes a sodium battery preferable to a lithium battery, but insertion hosts for Na + have lower capacities than insertion hosts for Li +.

Li-ion 150
article thumbnail

Univ. of Texas researchers propose lithium- or sodium-water batteries as next generation of high-capacity battery technology; applicable for EVs and grid storage

Green Car Congress

Researchers at the University of Texas, including Dr. John Goodenough, are proposing a strategy for high-capacity next-generation alkali (lithium or sodium)-ion batteries using water-soluble redox couples as the cathode. The present sodium-sulfur battery operates above 300 °C. Example of a lithium-water rechargeable battery.

Sodium 218