This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
A team of chemical engineers at the University of Arkansas has developed a new, two-step method for converting algae into butanol. The second stage of their process focuses on butyric acid and its conversion into butanol. The second stage of their process focuses on butyric acid and its conversion into butanol.
Successful operation of the technology at pre-commercial continuous scale has directly extracted lithium from brine in Arkansas and produced a purified, concentrated intermediate product (LiCl solution) which has been converted to better than battery-quality lithium carbonate final product.
CenterPoint Energy, a US energy delivery company, is adding 35 natural gas vehicles to its fleet across Arkansas, Louisiana, Minnesota, Mississippi, Oklahoma and Texas. Additionally, the company expects to provide natural gas service to at least 17 new compressed natural gas fueling stations built in the company’s service territory.
CIRCUITS project teams will accelerate the development and deployment of a new class of efficient, lightweight, and reliable power converters, based on wide-bandgap (WBG) semiconductors. data center energy consumption and operating cost while creating a high-volume commercial market for SiC-based power converters. Earlier post.).
The converted F-150 will travel across the country from Kansas City to Seattle, WA, and back through the US, stopping along the way, to complete its journey in Jacksonville, FL, on 18 May, followed by a Homecoming event in Asheville, NC, on 23 May. Alliance’s new Engineered Conversion System, installed on a Bi-Fuel 2016 3.5-liter
The project would convert wood biomass into drop in biofuels such as gasoline and diesel fuel. KiOR also has additional projects in various stages of development in Arkansas, Alabama and other southern states. KiOR, Inc.,
Acreage in Arkansas, Missouri, Ohio and Pennsylvania will be designated to grow giant miscanthus, a sterile hybrid warm-season grass that can be converted into energy to be used for heat, power, liquid biofuels, and bio-based products.
In electronic devices, WBG semiconductors can eliminate up to 90% of the power losses that currently occur during AC-to-DC and DC-to-AC electricity conversion, and they can handle voltages more than 10 times higher than Si-based devices, greatly enhancing performance in high-power applications. million to a $3.8-million GaN Systems, Inc.;
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content