This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
ExxonMobil Research and Engineering Company has filed a US patent application (# 20100326387 , published 30 December 2010) on methods using a wide range of fuel-alcoholblends to expand the operating envelope of engines operating in advanced combustion modes. reduced maximum rates of pressure increase during HTHR.
Formaldehyde, acetaldehyde, and butyraldehyde were the most significant carbonyls from the n-butanol blend, while formaldehyde, acetone, and 2-methylpropanal were the most significant from the i-butanol blend. The 12% i-butanol/7% ethanol blend was designed to produce no increase in gasoline vapor pressure.
The Model T Ford, which debuted in 1908, was originally designed to operate on alcohol. The Model T and Model A Fords were later designed to operate on either alcohol or gasoline or a blend of alcohol and gasoline. psi for all designated volatility attainment areas; and. 40 CFR § 80.27(d)
The preflame reactions are a strong function of temperature, so evaporative cooling from the fuel can also play a significant role, which is particularly important for fuels containing alcohol. Alcohol and gasoline-alcoholblends also offer efficiency benefits independent of their octane value. —Leone et al.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content