This site uses cookies to improve your experience. To help us insure we adhere to various privacy regulations, please select your country/region of residence. If you do not select a country, we will assume you are from the United States. Select your Cookie Settings or view our Privacy Policy and Terms of Use.
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Used for the proper function of the website
Used for monitoring website traffic and interactions
Cookie Settings
Cookies and similar technologies are used on this website for proper function of the website, for tracking performance analytics and for marketing purposes. We and some of our third-party providers may use cookie data for various purposes. Please review the cookie settings below and choose your preference.
Strictly Necessary: Used for the proper function of the website
Performance/Analytics: Used for monitoring website traffic and interactions
The pilot-scale project use both free (soluble) sugars and biomass (cellulosic) sugars from Ceres’ sweet sorghum hybrids grown in Alabama, Florida, Hawaii, Louisiana and Tennessee. As an energy crop, sweet sorghum is an impressive producer of low-cost, fermentable sugars. Earlier post.).
streamline the process by which green plants convert carbon. production of oil, which is stored in seeds and is convertible to. plants, and it is a liquid that can be extracted readily, separated, and converted into biodiesel fuel. converted into a fuel mixture that is comparable to diesel or. The team will. field trials.
This project will develop an integrated and stable catalytic deoxygenation process for converting bio-oil to drop-in fuels. This project will demonstrate long-term processing and catalyst stability in an automated, integrated pilot plant that converts biomass directly to gasoline and diesel fuel. With funding of up to $4.5
AOI 02: LowCost Electric Traction Drive Systems Using No Heavy Rare Earth Materials. LowCost, High-Performance, Heavy Rare Earth-Free 3-In-1 Electric Drive Unit. Low-Cost Rare-Earth Free Electric Drivetrain Enabled by Novel Permanent Magnets, Inverter, Integrated Design and Advanced Thermal Management.
University of Alabama. Integrated biochemical and electrochemical technologies (IBET) to convert organic waste to biopower via North American research and educational partnerships. Scalable CO 2 electrocatalysis technologies. Project title. Federal share. Topic 1:Scale-Up of Bench Applications. University of Michigan. 10,000,000.
This project will develop a lowcost, ultra-compact power module using innovative integrated-cooling to increase power density, improve performance, and reduce cost. This project will develop an integrated flame spray process for lowcost production of battery materials for lithium ion batteries and beyond.
We organize all of the trending information in your field so you don't have to. Join 5,000+ users and stay up to date on the latest articles your peers are reading.
You know about us, now we want to get to know you!
Let's personalize your content
Let's get even more personalized
We recognize your account from another site in our network, please click 'Send Email' below to continue with verifying your account and setting a password.
Let's personalize your content