Remove 2014 Remove Solar Remove Universal Remove Water
article thumbnail

EPFL team develops low-cost water splitting cell with solar-to-hydrogen efficiency of 12.3%

Green Car Congress

Michael Grätzel at EPFL (Ecole Polytechnique Fédérale de Lausanne) in Switzerland has developed a highly efficient and low-cost water-splitting cell combining an advanced perovskite tandem solar cell and a bi-functional Earth-abundant catalyst. conversion efficiency from solar energy to hydrogen, a record with earth-abundant materials.

Low Cost 278
article thumbnail

Researchers develop free-standing nanowire mesh for direct solar water-splitting to produce H2; new design for “artificial leaf”

Green Car Congress

The mesh with BiVO 4 nanowire photoanode for water oxidation and Rh-SrTiO 3 nanowire photocathode for water reduction produces hydrogen gas without an electron mediator. When immersed in water with visible light irradiation (? ? In the present study, we developed a new architecture for direct solar water-splitting.

Water 270
article thumbnail

GWU team uses one-pot process to co-generate H2 and solid carbon from water and CO2; solar fuels

Green Car Congress

One-pot electrolytic process produces H 2 and solid carbon from water and CO 2. The work is a further development of their work with STEP (solar thermal electrochemical process)—an efficient solar chemical process, based on a synergy of solar thermal and endothermic electrolyses, introduced by Licht and his colleagues in 2009.

Water 239
article thumbnail

ASU and Argonne researchers report progress on artificial leaf for solar conversion of water to H2 and O2

Green Car Congress

Researchers at Arizona State University and Argonne National Laboratory reported advances toward perfecting a functional artificial leaf in a paper in Nature Chemistry. The researchers took a closer look at how nature had overcome a related problem in the part of the photosynthetic process where water is oxidized to yield oxygen.

Water 236
article thumbnail

New photoelectrode with enhanced visible light absorption for improved solar water-splitting for hydrogen production

Green Car Congress

A team of researchers at Ulsan National Institute of Science and Technology (UNIST), Korea University, and the Korea Advanced Institute of Science and Technology (KAIST) has developed a new type of multilayered (Au NPs/TiO 2 /Au) photoelectrode that could boost the ability of solar water-splitting to produce hydrogen.

Water 150
article thumbnail

Molecular shuttle speeds up hydrogen production by the photocatalytic splitting of water

Green Car Congress

water splitting. The amount of solar radiation that reaches the Earth in a year exceeds current annual energy needs by more than 10,000-fold; however, it is not yet possible to store sufficiently high amounts of solar energy in an efficient way. Catalysts Hydrogen Production Solar Solar fuels' —Simon et al.

Water 218
article thumbnail

Stanford team reports new low-cost, non-precious metal catalyst for water splitting with performance close to platinum

Green Car Congress

Researchers at Stanford University, with colleagues at Oak Ridge National Laboratory and other institutions, have developed a nickel-based electrocatalyst for low-cost water-splitting for hydrogen production with performance close to that of much more expensive commercial platinum electrocatalysts. Pennycook, University of Tennessee.

Low Cost 273