Remove 2012 Remove Gasoline-Electric Remove Oil-Sands
article thumbnail

IHS CERA meta-analysis finds lifecycle GHG emissions for fuel produced solely from oil sands crude average 11% higher than from average crude refined in the US; high variability

Green Car Congress

Average values for WTW GHG emissions for oil sands and other crudes, tight boundary. When the oil sands products refined in the United States are considered—a mixture of oil sands and lower-carbon blending components—the GHG emissions are, on average, 9% higher than the average crude processed in the US.

Oil-Sands 388
article thumbnail

New lifecycle analysis of WTW GHG emissions of diesel and gasoline refined in US from Canadian oil sands crude

Green Car Congress

In a new, comprehensive study, a team from Argonne National Laboratory, Stanford University and UC Davis ITS has estimated the well-to-wheels (WTW) GHG emissions of US production of gasoline and diesel sourced from Canadian oil sands. g CO 2 e/MJ for US conventional crude oil recovery. This range can be compared to ∼4.4

Oil-Sands 150
article thumbnail

Understanding the variability of GHG life cycle studies of oil sands production

Green Car Congress

Full-fuel-cycle GHG emissions estimates for reformulated gasoline pathways by LCA study. Credit: ACS, Brandt 2012. He found that the variation in oil sands GHG estimates is due to a variety of causes. These include oil sands, enhanced oil recovery, coal-to-liquids and gas-to-liquids synthetic fuels, and oil shale.

Oil-Sands 225
article thumbnail

Researchers describe the “where” and “when” of life cycle emissions from gasoline and ethanol in the US

Green Car Congress

Researchers from the University of Minnesota have produced a spatially and temporally explicit life cycle inventory (LCI) of air pollutants from gasoline, ethanol derived from corn grain, and ethanol from corn stover for the contiguous US (the lower 48 states). Credit: ACS, Tessum et al. Click to enlarge. the contiguous US).

Gasoline 236
article thumbnail

Oil sands GHG lifecycle study using operating data finds lower emitting oil sands cases outperform higher emitting conventional crude cases; a call for more sophisticated tools and reporting

Green Car Congress

Well-to-wheel (WTW) greenhouse gas emissions for in situ SAGD and surface mining pathways generated employing GHOST/TIAX/ GHGenius combination and comparison with SAGD, mining and conventional crude oil literature pathways (all results are on a HHV basis). 74% of WTW emissions in our oil sands pathways. Click to enlarge.

Oil-Sands 287
article thumbnail

HEI report identifies potential health consequences from new vehicle fuels and technologies; recommended actions

Green Car Congress

The new SCET report reviews a range of new technologies and fuels, from improved internal combustion engines, to hybrid and other electric drive technologies, to existing and new bio- and other types of fuels. Hybrid, all-electric drive, and fuel cell technologies are likely to see substantial market penetration by the end of this decade.

Fuel 170
article thumbnail

Study finds plausibly high volumes of Canadian oil sands crudes in US refineries in 2025 would lead to modest increases in refinery CO2 emissions

Green Car Congress

An analysis of the US refining sector, based on linear programming (LP) modeling, finds that refining plausibly high volumes of Canadian oil sands crudes in US refineries in 2025 would lead to a modest increase in refinery CO 2 emissions (ranging between 5.4% to 9.3%) from a 2010 baseline, depending upon the supply scenario.

Oil-Sands 247